# wQN $_*$ and wQN $^*$

# Jaroslav Šupina

#### Institute of Mathematics Faculty of Science of P. J. Šafárik University

4. february 2010 Hejnice

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN\*

4. february 2010 Hejnice 1 / 16

Image: Image:

## perfectly normal topological space X

- functions from X to  $\mathbb{R}$
- ullet convergence of sequence  $\langle f_n:n\in\omega
  angle$  polynolise convergence.
- quasi-normal convergence of sequence (f<sub>n</sub> : n ∈ ω) if there exists a limit function f and a sequence of positive reals (e<sub>n</sub> : n ∈ ω) converging to zero such that

 $|f_n(\mathbf{x}) - f(\mathbf{x})| < \varepsilon_n$ 

## • perfectly normal topological space X

# • functions from X to $\mathbb{R}$

• convergence of sequence  $\langle f_n : n \in \omega \rangle$  - pointwise convergence.

 quasi-normal convergence of sequence (*i<sub>n</sub>* : *n* ∈ ω) - if there exists a limit function *i* and a sequence of positive reals (*c<sub>n</sub>* : *n* ∈ ω) converging to zero such that

 $|f_n(\mathbf{x}) - f(\mathbf{x})| < \varepsilon_n$ 

- perfectly normal topological space X
- functions from *X* to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (f<sub>n</sub> : n ∈ ω) if there exists a limit function f and a sequence of positive reals (c<sub>n</sub> : n ∈ ω) converging to zero such that

 $|f_n(x) - f(x)| < \varepsilon_n.$ 

- perfectly normal topological space X
- functions from X to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (f<sub>n</sub> : n ∈ ω) if there exists a limit function f and a sequence of positive reals (e.g. n ∈ ω)

# $|f_n(\mathbf{x}) - f(\mathbf{x})| < \varepsilon_n$

- perfectly normal topological space X
- functions from X to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (*f<sub>n</sub>* : *n* ∈ ω) if there exists a limit function *f* and a sequence of positive reals (ε<sub>n</sub> : *n* ∈ ω) converging to zero such that

$$|f_n(x)-f(x)|<\varepsilon_n$$

- perfectly normal topological space X
- functions from X to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (*f<sub>n</sub>* : *n* ∈ ω) if there exists a limit function *f* and a sequence of positive reals (ε<sub>n</sub> : *n* ∈ ω) converging to zero such that

$$|f_n(x)-f(x)|<\varepsilon_n$$

- perfectly normal topological space X
- functions from X to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (*f<sub>n</sub>* : *n* ∈ ω) if there exists a limit function *f* and a sequence of positive reals (ε<sub>n</sub> : *n* ∈ ω) converging to zero such that

 $|f_n(x)-f(x)|<\varepsilon_n$ 

- perfectly normal topological space X
- functions from X to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (*f<sub>n</sub>* : *n* ∈ ω) if there exists a limit function *f* and a sequence of positive reals (ε<sub>n</sub> : *n* ∈ ω) converging to zero such that

$$|f_n(x)-f(x)|<\varepsilon_n$$

- perfectly normal topological space X
- functions from *X* to  $\mathbb{R}$
- convergence of sequence  $\langle f_n : n \in \omega \rangle$  pointwise convergence
- quasi-normal convergence of sequence (*f<sub>n</sub>* : *n* ∈ ω) if there exists a limit function *f* and a sequence of positive reals (ε<sub>n</sub> : *n* ∈ ω) converging to zero such that

$$|f_n(x)-f(x)|<\varepsilon_n$$

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

#### wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

#### SSP-property

X has the property SSP if for each sequence of sequences  $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$  of continuous functions such that  $f_{n,m} \to 0$  for any  $n \in \omega$ , there exists a sequence  $\langle m_n : n \in \omega \rangle$  such that  $f_{n,m_n} \to 0$ .

*X* has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

#### wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

## SSP-property

*X* has the property SSP if for each sequence of sequences  $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$  of continuous functions such that  $f_{n,m} \to 0$  for any  $n \in \omega$ , there exists a sequence  $\langle m_n : n \in \omega \rangle$  such that  $f_{n,m_n} \to 0$ .

ヘロト ヘ戸ト ヘヨト ヘヨト

*X* has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

## wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

## SSP-property

*X* has the property SSP if for each sequence of sequences  $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$  of continuous functions such that  $f_{n,m} \to 0$  for any  $n \in \omega$ , there exists a sequence  $\langle m_n : n \in \omega \rangle$  such that  $f_{n,m_n} \to 0$ .

イロト 不得 トイヨト イヨト 三日

*X* has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

## wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

# SSP-property

*X* has the property SSP if for each sequence of sequences  $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$  of continuous functions such that  $f_{n,m} \to 0$  for any  $n \in \omega$ , there exists a sequence  $\langle m_n : n \in \omega \rangle$  such that  $f_{n,m_n} \to 0$ .

ヘロト 人間 とくほ とくほ とう

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

#### Some covers:

- $\gamma$  -cover  $\mathcal{U}$  every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 
  - a family of all countable open γ -covers: Γ(X), Γ
- shrinkable γ -cover U a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U
  - a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

A D N A P N A P N A P

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

Some covers:

- $\gamma$  -cover  $\mathcal{U}$  every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 
  - a family of all countable open  $\gamma$  -covers:  $\Gamma(X)$ ,  $\Gamma$
- shrinkable γ -cover U a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U
  - a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

#### Some covers:

•  $\gamma$  -cover  $\mathcal{U}$  - every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 

• a family of all countable open  $\gamma$  -covers:  $\Gamma(X)$ ,  $\Gamma$ 

shrinkable γ -cover U - a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U

a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

#### Some covers:

•  $\gamma$  -cover  $\mathcal{U}$  - every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 

• a family of all countable open  $\gamma$  -covers:  $\Gamma(X)$ ,  $\Gamma$ 

shrinkable γ -cover U - a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U

• a family of all countable open shrinkable  $\gamma$  -covers:  $\Gamma^{sh}(X)$ ,  $\Gamma^{sh}$ 

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

#### Some covers:

•  $\gamma$  -cover  $\mathcal{U}$  - every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 

• a family of all countable open  $\gamma$  -covers:  $\Gamma(X)$ ,  $\Gamma$ 

shrinkable γ -cover U - a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U

a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

Some covers:

- $\gamma$  -cover  $\mathcal{U}$  every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 
  - a family of all countable open  $\gamma$  -covers:  $\Gamma(X)$ ,  $\Gamma$
- shrinkable γ -cover U a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U

a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

Some covers:

- $\gamma$  -cover  $\mathcal{U}$  every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 
  - a family of all countable open γ -covers: Γ(X), Γ
- shrinkable γ -cover U a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U

a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

Let  $\mathcal{A}$ ,  $\mathcal{B}$  be families of covers of a space X. X possesses the property  $S_1(\mathcal{A}, \mathcal{B})$  if for every sequence  $\langle \mathcal{U}_n : n \in \omega \rangle$  of covers from  $\mathcal{A}$  there exist sets  $U_n \in \mathcal{U}_n$  such that  $\{U_n; n \in \omega\} \in \mathcal{B}$ .

Some covers:

- $\gamma$  -cover  $\mathcal{U}$  every  $x \in X$  lies in all but finitely many members of  $\mathcal{U}$ 
  - a family of all countable open γ -covers: Γ(X), Γ
- shrinkable γ -cover U a γ -cover with the property that there exists a closed γ -cover V which is a refinement of U
  - a family of all countable open shrinkable γ -covers: Γ<sup>sh</sup>(X), Γ<sup>sh</sup>

# $\begin{array}{ccc} & & SSP \\ & & & \\ & & \\ QN & \longrightarrow & S_1(\Gamma,\Gamma) & \longrightarrow & S_1(\Gamma^{sh},\Gamma) \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

There is a model of ZFC with an S<sub>1</sub>(Γ, Γ)-set which is not a QN-set.
 There is a model of ZFC, where all of these properties are equivalent.

#### Scheepers conjecture

Perfectly normal wQN-space has property  $S_1(\Gamma, \Gamma)$ .

| (U | PJ | ١Š | Ko | ši | ce) | ) |
|----|----|----|----|----|-----|---|
|    |    |    |    |    |     |   |

# $\begin{array}{ccc} & & SSP \\ & & & \\ & & \\ QN & \longrightarrow & S_1(\Gamma,\Gamma) & \longrightarrow & S_1(\Gamma^{sh},\Gamma) \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

**1** There is a model of ZFC with an  $S_1(\Gamma, \Gamma)$ -set which is not a QN-set.

There is a model of ZFC, where all of these properties are equivalent.

#### Scheepers conjecture

Perfectly normal wQN-space has property  $S_1(\Gamma, \Gamma)$ .

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN\*

# $\begin{array}{ccc} & & & SSP \\ & & & \\ & & \\ QN & \longrightarrow & S_1(\Gamma,\Gamma) & \longrightarrow & S_1(\Gamma^{sh},\Gamma) \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

**1** There is a model of ZFC with an  $S_1(\Gamma, \Gamma)$ -set which is not a QN-set.

There is a model of ZFC, where all of these properties are equivalent.

#### Scheepers conjecture

Perfectly normal wQN-space has property  $S_1(\Gamma, \Gamma)$ .

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

ъ

# $\begin{array}{ccc} & & & & \\ & & & \\ QN & \longrightarrow & S_1(\Gamma,\Gamma) & \longrightarrow & S_1(\Gamma^{sh},\Gamma) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

- **1** There is a model of ZFC with an  $S_1(\Gamma, \Gamma)$ -set which is not a QN-set.
- 2 There is a model of ZFC, where all of these properties are equivalent.



A function f is lower semicontinuous if for any real number r the set

$$f^{-1}((r,\infty)) = \{x \in X : f(x) > r\}$$

is **open** in a space *X*.

## Upper semicontinuous function

A function f is upper semicontinuous if for every real number r the set

$$f^{-1}((-\infty, r)) = \{x \in X : f(x) < r\}$$

is **open** in a space X.

A (10) A (10) A (10)

A function f is lower semicontinuous if for any real number r the set

$$f^{-1}((r,\infty)) = \{x \in X : f(x) > r\}$$

is **open** in a space *X*.

## **Upper semicontinuous function**

A function f is upper semicontinuous if for every real number r the set

$$f^{-1}((-\infty, r)) = \{x \in X : f(x) < r\}$$

is open in a space X.

A function f is lower semicontinuous if for any real number r the set

$$f^{-1}((r,\infty)) = \{x \in X : f(x) > r\}$$

is **open** in a space *X*.

## Upper semicontinuous function

A function f is upper semicontinuous if for every real number r the set

$$f^{-1}((-\infty, r)) = \{x \in X : f(x) < r\}$$

is open in a space X.

A function f is lower semicontinuous if for any real number r the set

$$f^{-1}((r,\infty)) = \{x \in X : f(x) > r\}$$

is **open** in a space *X*.

## **Upper semicontinuous function**

A function f is upper semicontinuous if for every real number r the set

$$f^{-1}((-\infty, r)) = \{x \in X : f(x) < r\}$$

is **open** in a space *X*.

**wQN**<sub>\*</sub> and **SSP**<sub>\*</sub>- as wQN and SSP but continuous functions are substituted by lower semicontinuous ones in their definitions

**wQN**\* and **SSP**\*- as wQN and SSP but continuous functions are substituted by upper semicontinuous ones in their definitions

Sakai M.: *Selection principles and upper semicontinuous functions* (2009):

## • wQN\* $\rightarrow$ S<sub>1</sub>( $\Gamma$ , $\Gamma$ )

・ロト ・ 同ト ・ ヨト ・ ヨ

Bukovsky L.: On  $wQN_*$  and  $wQN^*$  spaces (2008):

**wQN**<sub>\*</sub> and **SSP**<sub>\*</sub>- as wQN and SSP but continuous functions are substituted by lower semicontinuous ones in their definitions

**wQN\*** and **SSP\***- as wQN and SSP but continuous functions are substituted by upper semicontinuous ones in their definitions

Sakai M.: *Selection principles and upper semicontinuous functions* (2009):

## • wQN<sup>\*</sup> $\rightarrow$ S<sub>1</sub>( $\Gamma$ , $\Gamma$ )

・ロト ・ 同ト ・ ヨト ・ ヨ

**wQN**<sub>\*</sub> and **SSP**<sub>\*</sub>- as wQN and SSP but continuous functions are substituted by lower semicontinuous ones in their definitions

**wQN\*** and **SSP\***- as wQN and SSP but continuous functions are substituted by upper semicontinuous ones in their definitions

Sakai M.: *Selection principles and upper semicontinuous functions* (2009):

• wQN<sup>\*</sup>  $\rightarrow$  S<sub>1</sub>( $\Gamma$ ,  $\Gamma$ )

**wQN**<sub>\*</sub> and **SSP**<sub>\*</sub>- as wQN and SSP but continuous functions are substituted by lower semicontinuous ones in their definitions

**wQN**\* and **SSP**\*- as wQN and SSP but continuous functions are substituted by upper semicontinuous ones in their definitions

Sakai M.: *Selection principles and upper semicontinuous functions* (2009):

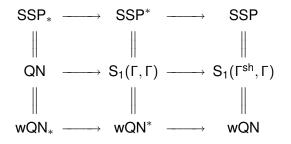
•  $wQN^* \rightarrow S_1(\Gamma, \Gamma)$ 

**wQN**<sub>\*</sub> and **SSP**<sub>\*</sub>- as wQN and SSP but continuous functions are substituted by lower semicontinuous ones in their definitions

**wQN**\* and **SSP**\*- as wQN and SSP but continuous functions are substituted by upper semicontinuous ones in their definitions

Sakai M.: *Selection principles and upper semicontinuous functions* (2009):

• wQN<sup>\*</sup> 
$$\rightarrow$$
 S<sub>1</sub>( $\Gamma$ , $\Gamma$ )



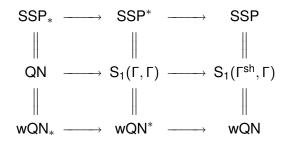
What are the direct proofs of implications

wQN<sub>\*</sub> → wQN<sup>\*</sup>
 SSP<sub>\*</sub> → SSP<sup>\*</sup>?

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN\*

4. february 2010 Hejnice 8 / 16



What are the direct proofs of implications

- $wQN_* \rightarrow wQN^*$
- $SSP_* \rightarrow SSP^*$ ?

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

A space X has property (USC), if whenever  $\langle f_n : n \in \omega \rangle$  of **upper semicontinuous functions** with  $f(X) \subseteq [0, 1]$  converges to zero, there is  $\langle g_n : n \in \omega \rangle$  of **continuous functions** converging to zero such that

#### $f_n \leq g_n$

for any  $n \in \omega$ .

イロト イポト イヨト イヨト

A space X has property (USC), if whenever  $\langle f_n : n \in \omega \rangle$  of upper semicontinuous functions with  $f(X) \subseteq [0, 1]$  converges to zero, there is  $\langle g_n : n \in \omega \rangle$  of continuous functions converging to zero such that

 $f_n \leq g_n$ 

for any  $n \in \omega$ .

< Ξ ► < Ξ ►</li>

A space *X* has property (USC), if whenever  $\langle f_n : n \in \omega \rangle$  of **upper semicontinuous functions** with  $f(X) \subseteq [0, 1]$  converges to zero, there is  $\langle g_n : n \in \omega \rangle$  of **continuous functions** converging to zero such that

#### $f_n \leq g_n$

for any  $n \in \omega$ .

A space *X* has property (USC), if whenever  $\langle f_n : n \in \omega \rangle$  of **upper semicontinuous functions** with  $f(X) \subseteq [0, 1]$  converges to zero, there is  $\langle g_n : n \in \omega \rangle$  of **continuous functions** converging to zero such that



for any  $n \in \omega$ .

A space *X* has property (USC), if whenever  $\langle f_n : n \in \omega \rangle$  of **upper semicontinuous functions** with  $f(X) \subseteq [0, 1]$  converges to zero, there is  $\langle g_n : n \in \omega \rangle$  of **continuous functions** converging to zero such that

$$f_n \leq g_n$$

for any  $n \in \omega$ .

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

• there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$ 

- $f_{n,n} = f_n \searrow 0$  and  $f_{n,n} = f_n$  is lower semicontinuous function
- ullet by SSP, there is  $arphi\in ``u$  such that  $f_{p,q(n)}=f_n\searrow 0$
- f<sub>ne(n)</sub> is required sequence for (USC).

#### $\circ: \mathsf{SSP}_* \to (\mathsf{USC})$

4 日 2 4 周 2 4 国 2 4 国 2 1

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

• there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$ 

- $f_{n,m} f_n \searrow 0$  and  $f_{n,m} f_n$  is lower semicontinuous function
- by SSP, there is  $\varphi\in ``\omega$  such that  $f_{n, q(q)} = f_n \searrow 0$
- f<sub>tre(1)</sub> is required sequence for (USC).

### $\circ: \mathsf{SSP}_* \to (\mathsf{USC})$

イロト イ押ト イヨト イヨト

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

• there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$ 

•  $f_{n,m} - f_n \searrow 0$  and  $f_{n,m} - f_n$  is lower semicontinuous function

• by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $f_{n,\varphi(n)} - f_n \searrow 0$ 

•  $f_{n,\varphi(n)}$  is required sequence for (USC)

•  $SSP_* \rightarrow (USC)$ 

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

• there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$ 

•  $f_{n,m} - f_n \searrow 0$  and  $f_{n,m} - f_n$  is lower semicontinuous function

• by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $f_{n,\varphi(n)} - f_n \searrow 0$ 

*f<sub>n,\varphi(n)</sub>* is required sequence for (USC)

#### • $SSP_* \rightarrow (USC)$

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

- there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$
- $f_{n,m} f_n \searrow 0$  and  $f_{n,m} f_n$  is lower semicontinuous function
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $f_{n,\varphi(n)} f_n \searrow 0$

•  $f_{n,\varphi(n)}$  is required sequence for (USC)

•  $SSP_* \rightarrow (USC)$ 

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

- there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$
- $f_{n,m} f_n \searrow 0$  and  $f_{n,m} f_n$  is lower semicontinuous function
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $f_{n,\varphi(n)} f_n \searrow 0$
- $f_{n,\varphi(n)}$  is required sequence for (USC)

#### • $SSP_* \rightarrow (USC)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let  $\langle f_n : n \in \omega \rangle$  be a sequence of upper semicontinuous functions with  $f_n(X) \subseteq [0, 1]$  converging to zero. Then

- there is  $\langle f_{n,m} : m \in \omega \rangle$ , such that  $f_{n,m} \searrow f_n$  for every  $n \in \omega$
- $f_{n,m} f_n \searrow 0$  and  $f_{n,m} f_n$  is lower semicontinuous function
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $f_{n,\varphi(n)} f_n \searrow 0$
- $f_{n,\varphi(n)}$  is required sequence for (USC)

•  $SSP_* \rightarrow (USC)$ 

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$
- $f_{n,\varphi(n)} \rightarrow 0$
- $\bullet: \operatorname{SSP}_* \to \operatorname{SSP}^*$

 $\bullet: \mathsf{wQN}_* \to \mathsf{SSP}_*$ 

 $\bullet : w Q N_* \to w Q N^* \cap$ 

◆□> ◆□> ◆豆> ◆豆> □豆

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$

•  $f_{n,\varphi(n)} \to 0$ 

•  $SSP_* \rightarrow SSP^*$ 

•  $wQN_* \rightarrow SSP_*$ 

•  $wQN_* \rightarrow wQN^*$ 

| /11 | <b>D</b> 1 | ň | 14- | . ×: |     |  |
|-----|------------|---|-----|------|-----|--|
| (U  | PJ         | 5 | NC  | S    | ce) |  |

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$

•  $f_{n,\varphi(n)} 
ightarrow 0$ 

•  $SSP_* \rightarrow SSP^*$ 

•  $wQN_* \rightarrow SSP_*$ 

•  $wQN_* \rightarrow wQN^*$ 

| (11 | P.I | ١Š. | Ko   | ĕi | ce) |  |
|-----|-----|-----|------|----|-----|--|
| (0  |     | 5   | 1.00 | 5  | 66, |  |

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$

• 
$$f_{n,\varphi(n)} \rightarrow 0$$

#### • $SSP_* \rightarrow SSP^*$

•  $wQN_* \rightarrow SSP_*$ 

•  $wQN_* \rightarrow wQN^*$ 

| (UPJŠ Košice) | (U | PJ | IŠ | Ko | oši | ce) |  |
|---------------|----|----|----|----|-----|-----|--|
|---------------|----|----|----|----|-----|-----|--|

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$

•  $f_{n,\varphi(n)} \rightarrow 0$ 

•  $SSP_* \rightarrow SSP^*$ 

• wQN $_* \rightarrow \mathsf{SSP}_*$ 

•  $wQN_* \rightarrow wQN^*$ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 11 / 16

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$

• 
$$f_{n,\varphi(n)} \rightarrow 0$$

•  $SSP_* \rightarrow SSP^*$ 

#### • wQN $_* \rightarrow SSP_*$

•  $wQN_* \rightarrow wQN^*$ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 11 / 16

- by (USC) there is ⟨⟨g<sub>n,m</sub> : m ∈ ω⟩ : n ∈ ω⟩ of continuous functions converging to zero such that f<sub>n,m</sub> ≤ g<sub>n,m</sub>
- by SSP<sub>\*</sub> there is  $\varphi \in {}^{\omega}\omega$  such that  $g_{n,\varphi(n)} \to 0$

• 
$$f_{n,\varphi(n)} \to 0$$

•  $SSP_* \rightarrow SSP^*$ 

• wQN $_* \rightarrow SSP_*$ 

•  $wQN_* \rightarrow wQN^*$ 

| (UPJ | ŠΚ | ošice) |  |
|------|----|--------|--|
|      |    |        |  |

・ロト ・同ト ・ヨト ・ヨ

- $f^{-1}((r,1]) = (-f)^{-1}([-1,r))$
- $X \longrightarrow [-1,0]$  is upper semicontinuous function
- $\circ:\operatorname{SSP}^*([-1,0])\to\operatorname{SSP}_*([0,1])$

Properties related to semicontinuous functions depend on ranges of functions taken in their definitions.

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 12 / 16

э

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

• 
$$f^{-1}((r,1]) = (-f)^{-1}([-1,r))$$

- $(-f): X \rightarrow [-1, 0]$  is upper semicontinuous function
- $SSP^*([-1,0]) \rightarrow SSP_*([0,1])$

Properties related to semicontinuous functions depend on ranges of functions taken in their definitions.

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 12 / 16

→ E > < E</p>

• 
$$f^{-1}((r,1]) = (-f)^{-1}([-1,r))$$

- $(-f): X \rightarrow [-1, 0]$  is upper semicontinuous function
- $SSP^*([-1,0]) \rightarrow SSP_*([0,1])$

Properties related to semicontinuous functions depend on ranges of functions taken in their definitions.

★ E ► ★ E ►

• 
$$f^{-1}((r,1]) = (-f)^{-1}([-1,r))$$

•  $(-f): X \rightarrow [-1, 0]$  is upper semicontinuous function

•  $SSP^*([-1,0]) \to SSP_*([0,1])$ 

Properties related to semicontinuous functions depend on ranges of functions taken in their definitions.

伺 とく きとく きと

• 
$$f^{-1}((r,1]) = (-f)^{-1}([-1,r))$$

- $(-f): X \rightarrow [-1, 0]$  is upper semicontinuous function
- $SSP^*([-1,0]) \rightarrow SSP_*([0,1])$

Properties related to semicontinuous functions depend on ranges of functions taken in their definitions.

★ 문 ► ★ 문 ►

• 
$$f^{-1}((r,1]) = (-f)^{-1}([-1,r))$$

•  $(-f): X \rightarrow [-1, 0]$  is upper semicontinuous function

• 
$$SSP^*([-1,0]) \to SSP_*([0,1])$$

Properties related to semicontinuous functions depend on ranges of functions taken in their definitions.

**QN(A)**- as QN with functions restricted to range A **wQN(A)**, **wQN<sub>\*</sub>(A)**, **wQN<sup>\*</sup>(A)**- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with functions restricted to range A **SSP(A)**, **SSP<sub>\*</sub>(A)**, **SSP<sup>\*</sup>(A)**- as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range A

# $\mathsf{ON}([0, \infty]) = \mathsf{ON}([-1, 1]) = \mathsf{ON}([0, \infty]) = \mathsf{ON}([0, 1]) = \mathsf{ON}([0, 1$

 $\mathsf{MON}([0,1]) \equiv \mathsf{MON}([0,\infty]) \equiv \mathsf{MON}([0,\infty]) \equiv \mathsf{MON}([0,1]) \equiv \mathsf{MON}([0,1]$ 

 $\mathrm{SSP}(\mathbb{R}) \cong \mathrm{SSP}([-1,1]) \cong \mathrm{SSP}([0,\infty)) \cong \mathrm{SSP}([0,1]) \cong \mathrm{SSP}([0,\infty)) = \mathrm{SSP}([0,1]) \cong \mathrm{SSP}([0,\infty)) = \mathrm{SSP}([0,\infty)$ 

イロト イ押ト イヨト イヨト

# **QN(A)**- as QN with functions restricted to range A wQN(A), wQN<sub>\*</sub>(A), wQN<sup>\*</sup>(A)- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with

restricted to range A

**SSP(A)**, **SSP<sub>\*</sub>(A)**, **SSP<sup>\*</sup>(A)**- as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range A

# $\mathsf{ON}([0,\pi])=\mathsf{ON}([-1,\pi])=\mathsf{ON}([0,\infty))=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{ON}([0,\pi])=\mathsf{$

 $wQN([0] = wQN([-1,1]) = wQN([0,\infty)) = wQN([0,1]) = wQN([$ 

 $SSP(n) = SSP([-1, 1]) = SSP([0, \infty)) = SSP([0, 1]) = SSP($ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN\*

4. february 2010 Hejnice 13 / 16

#### QN(A)- as QN with functions restricted to range A

**wQN(A)**, **wQN<sub>\*</sub>(A)**, **wQN<sup>\*</sup>(A)**- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with functions restricted to range A

**SSP(A)**, **SSP<sub>\*</sub>(A)**, **SSP<sup>\*</sup>(A)**- as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range A

# $\mathsf{ON}([0,1])=\mathsf{ON}([0,\infty))=\mathsf{ON}([0,1])=\mathsf{ON}([0,\infty))=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{ON}([0,1])=\mathsf{O$

# $\mathsf{WQN}(\mathbb{R}) = \mathsf{WQN}([-1,1]) = \mathsf{WQN}([0,\infty)) = \mathsf{WQN}([0,1]) = \mathsf{WQN}([0,1]$

## $SSP(\mathbb{R}) = SSP([-1,1]) = SSP([0,\infty)) = SSP([0,1]) = SSP$

<ロト <四ト < 回ト < 回ト < 回ト - 三日

## **QN(***A***)**- as QN with functions restricted to range *A* **wQN(***A***)**, **wQN**<sub>\*</sub>(*A*), **wQN**<sup>\*</sup>(*A*)- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with functions restricted to range *A*

**SSP(A)**, **SSP<sub>\*</sub>(A)**, **SSP<sup>\*</sup>(A)** as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range A

# $\mathsf{QN}(\mathbb{R}) \equiv \mathsf{QN}([-1,1]) \equiv \mathsf{QN}([0,\infty)) \equiv \mathsf{QN}([0,1]) \equiv \mathsf{QN}([0,1])$

# $\mathsf{WQN}([0,1]) = \mathsf{WQN}([-1,1]) = \mathsf{WQN}([0,\infty]) = \mathsf{WQN}([0,1]) = \mathsf{WQN}([0,1$

 $\mathrm{SSP}(\mathbb{R}) = \mathrm{SSP}([-1,1]) = \mathrm{SSP}([0,\infty)) = \mathrm{SSP}([0,1]) = \mathrm{SSP}([0,1]) = \mathrm{SSP}([0,\infty)) = \mathrm{SSP}([0,\infty)$ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 13 / 16

QN(*A*)- as QN with functions restricted to range *A* wQN(*A*), wQN<sub>\*</sub>(*A*), wQN<sup>\*</sup>(*A*)- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with functions restricted to range *A* SSP(*A*), SSP<sub>\*</sub>(*A*), SSP<sup>\*</sup>(*A*)- as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range *A* 

 $QN(\mathbb{R}) \equiv QN([-1,1]) \equiv QN([0,\infty)) \equiv QN([0,1]) \equiv QN([0,1])$ 

 $wQN(\mathbb{R}) \equiv wQN([-1,1]) \equiv wQN([0,\infty)) \equiv wQN([0,1]) \equiv wQN([0,1])$ 

 $SSP(\mathbb{R}) \equiv SSP([-1,1]) \equiv SSP([0,\infty)) \equiv SSP([0,1]) \equiv SSP$ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 13 / 16

< □ > < 同 > < 回 > < 回 > < 回 > < 回

**QN(***A***)**- as QN with functions restricted to range *A* **wQN(***A***)**, **wQN**<sub>\*</sub>(*A*), **wQN**<sup>\*</sup>(*A*)- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with functions

restricted to range A

**SSP(A)**, **SSP<sub>\*</sub>(A)**, **SSP<sup>\*</sup>(A)**- as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range A

$$\mathsf{QN}(\mathbb{R}) \equiv \mathsf{QN}([-1,1]) \equiv \mathsf{QN}([0,\infty)) \equiv \mathsf{QN}([0,1]) \equiv \mathsf{QN}$$

 $wQN(\mathbb{R}) \equiv wQN([-1,1]) \equiv wQN([0,\infty)) \equiv wQN([0,1]) \equiv wQN$ 

 $SSP(\mathbb{R}) \equiv SSP([-1,1]) \equiv SSP([0,\infty)) \equiv SSP([0,1]) \equiv SSP$ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

イロト イ押ト イヨト イヨト

**QN**(*A*)- as QN with functions restricted to range *A* **wQN**(*A*), **wQN**<sub>\*</sub>(*A*), **wQN**<sup>\*</sup>(*A*)- as wQN, wQN<sub>\*</sub>, wQN<sup>\*</sup> with functions

restricted to range A

**SSP(A)**, **SSP<sub>\*</sub>(A)**, **SSP<sup>\*</sup>(A)**- as SSP, SSP<sub>\*</sub>, SSP<sup>\*</sup> with functions restricted to range A

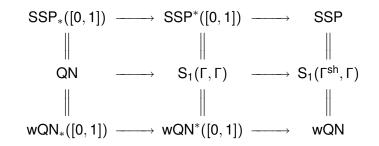
$$\mathsf{QN}(\mathbb{R}) \equiv \mathsf{QN}([-1,1]) \equiv \mathsf{QN}([0,\infty)) \equiv \mathsf{QN}([0,1]) \equiv \mathsf{QN}$$

 $wQN(\mathbb{R})\equiv wQN([-1,1])\equiv wQN([0,\infty))\equiv wQN([0,1])\equiv wQN$ 

 $SSP(\mathbb{R})\equiv SSP([-1,1])\equiv SSP([0,\infty))\equiv SSP([0,1])\equiv \textbf{SSP}$ 

(UPJŠ Košice)

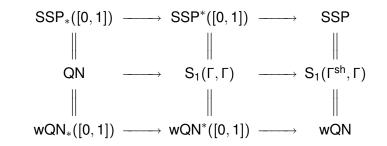
◆ロト ◆聞 と ◆臣 と ◆臣 と 三臣 二



What are the relations among  $wQN_*([-1,1])$ ,  $SSP_*([-1,1])$ , ...?

| UPJŠ Košice) | wQN <sub>*</sub> and wQN <sup>*</sup> | 4. february 2010 Hejnice | 14 / 16 |
|--------------|---------------------------------------|--------------------------|---------|

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



What are the relations among  $wQN_*([-1, 1])$ ,  $SSP_*([-1, 1])$ , ...?

| (UPJŠ Košice) | wQN <sub>*</sub> and wQN <sup>*</sup> | 4. february 2010 Hejnice | 14 / 16 |
|---------------|---------------------------------------|--------------------------|---------|

▲□▶▲□▶▲□▶▲□▶ □ のQで

# Equivalent properties

 $wQN^{*}([0, 1])$  $wQN^{*}([0, \infty))$ 

 $SSP_{*}([0, 1])$   $SSP_{*}([0, \infty))$   $SSP_{*}([-1, 1])$   $SSP^{*}([-1, 1])$   $SSP_{*}(\mathbb{R})$  $SSP^{*}(\mathbb{R})$ 

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN\*

 $wQN^{*}([0, 1])$  $wQN^*([0,\infty))$ 

 $SSP^{*}([0, 1])$  $SSP^*([0,\infty))$ 

wQN<sub>\*</sub> and wQN<sup>\*</sup>

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$wQN^{*}([0, 1]) \\ wQN^{*}([0, \infty))$$

$$SSP^{*}([0, 1])$$
  
 $SSP^{*}([0, \infty))$ 

$$\begin{split} & wQN_*([0,1]) & SSP_*([0,1]) \\ & wQN_*([0,\infty)) & SSP_*([0,\infty)) \\ & wQN_*([-1,1]) & SSP_*([-1,1]) \\ & wQN^*([-1,1]) & SSP^*([-1,1]) \\ & wQN_*(\mathbb{R}) & SSP_*(\mathbb{R}) \\ & wQN^*(\mathbb{R}) & SSP^*(\mathbb{R}) \end{split}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

# Thanks for your attention!

(UPJŠ Košice)

wQN<sub>\*</sub> and wQN<sup>\*</sup>

4. february 2010 Hejnice 16 / 16